7,926 research outputs found

    Renormalization in a Lorentz-violating model and higher-order operators

    Full text link
    The renormalization in a Lorentz-breaking scalar-spinor higher-derivative model involving Ï•4\phi^4 self-interaction and the Yukawa-like coupling is studied. We explicitly de- monstrate that the convergence is improved in comparison with the usual scalar-spinor model, so, the theory is super-renormalizable, with no divergences beyond four loops. We compute the one-loop corrections to the propagators for the scalar and fermionic fields and show that in the presence of higher-order Lorentz invariance violation, the poles that dominate the physical theory, are driven away from the standard on-shell pole mass due to radiatively induced lower dimensional operators. The new operators change the standard gamma-matrix structure of the two-point functions, introduce large Lorentz-breaking corrections and lead to modifications in the renormalization conditions of the theory. We found the physical pole mass in each sector of our model.Comment: 20 pages, 5 figures. New version with modifications in the renormalized Lagrangian. To be published in EPJ

    Dynamical Lorentz and CPT symmetry breaking in a 4D four-fermion model

    Full text link
    In a 4D chiral Thirring model we analyse the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current ψˉγμγ5ψ\bar\psi\gamma^{\mu} \gamma_5 \psi may assume a nonzero vacuum expectation value which triggers the Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee like model containing a Chern-Simons term.Comment: Small modifications in the text and new references added, 12 pages, 4 figures, revtex4. To appear in Phys. Rev.

    On the induction of the four-dimensional Lorentz-breaking non-Abelian Chern-Simons action

    Full text link
    A four-dimensional Lorentz-breaking non-Abelian Chern-Simons like action is generated as a one-loop perturbative correction via an appropriate Lorentz-breaking coupling of the non-Abelian gauge field to the spinor field. This term is shown to be regularization dependent but nevertheless it can be found unambiguously in different regularization schemes at zero and finite temperature.Comment: accepted version in Physical Review

    The Low Energy Limit of the Chern-Simons Theory Coupled to Fermions

    Get PDF
    We study the nonrelativistic limit of the theory of a quantum Chern--Simons field minimally coupled to Dirac fermions. To get the nonrelativistic effective Lagrangian one has to incorporate vacuum polarization and anomalous magnetic moment effects. Besides that, an unsuspected quartic fermionic interaction may also be induced. As a by product, the method we use to calculate loop diagrams, separating low and high loop momenta contributions, allows to identify how a quantum nonrelativistic theory nests in a relativistic one.Comment: 18 pages, 8 figures, Late

    On the radiative corrections in the Horava-Lifshitz z=2 QED

    Get PDF
    We calculate one-loop contributions to the two and three point spinor-vector functions in z=2 Horava-Lifshitz QED. This allows us to obtain the anomalous magnetic moment.Comment: 10 pages, minor correction
    • …
    corecore